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ABSTRACT 
Sharing scientific data, software, and instruments is 
becoming increasingly common as science moves toward 
large-scale, distributed collaborations. Sharing these 
resources requires extra work to make them generally 
useful. Although we know much about the extra work 
associated with sharing data, we know little about the work 
associated with sharing contributions to software, even 
though software is of vital importance to nearly every 
scientific result. This paper presents a qualitative, 
interview-based study of the extra work that developers and 
end users of scientific software undertake. Our findings 
indicate that they conduct a rich set of extra work around 
community management, code maintenance, education and 
training, developer-user interaction, and foreseeing user 
needs. We identify several conditions under which they are 
likely to do this work, as well as design principles that can 
facilitate it. Our results have important implications for 
future empirical studies as well as funding policy. 
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INTRODUCTION 
We are in an era of distributed, large-scale science that 
depends not only on new technological advances, but also 
on “human infrastructure,” complex arrangements of 
people, organizations and communities [22]. Studies of 
cyberinfrastructure and e-Science have pointed out that 
creating this infrastructure is an ongoing task, involving 
continuous collaboration, alignment, and adjustment among 
many stakeholders [3]. Sharing scientific resources, a 

central dimension of this collaboration, has been a topic of 
great interest to the CSCW community as of late [4,10,29].  

Sharing scientific resources requires extra work, voluntary 
or involuntary unpaid labor, to make them generally useful. 
A significant portion of recent research on sharing in 
science has documented extra work from the perspective of 
the recipient: locating data [39], interpreting data [5,29], 
and assessing their reliability [10,15]. There is also extra 
work from the perspective of the sharer. Standardizing data, 
for instance, requires reaching agreement on key terms, 
creating protocols for data collection, providing tutorials 
and training on implementing the standards, and translating 
the standards to forms, spreadsheet templates, and 
interfaces [2,26].  

The above studies have focused primarily on the work 
scientists do to share data. Other than work showing that 
scientists share software based on social ties [18], we know 
little about the extra work to make contributions to software 
generally useful, even though software is a major output of 
the scientific process. More than other assets produced by 
scientific work, such as published results and archived data, 
software requires continuous maintenance effort or it soon 
loses its value, as it becomes incompatible with new 
releases of operating systems, middleware, and 
complementary software.  

Extra work provides powerful leverage for other scientists 
who can use the software to produce new knowledge. If a 
scientist spends 10 hours writing a piece of software, plus 
an additional hour to make it generally useful, other 
scientists who use it get the benefit of that 10 hours of 
work. Even if only 1 other scientist uses it, the benefit from 
the perspective of the community is 10 hours. If 2 scientists 
use it, 20 hours, and so on. If we can understand what this 
extra work is, and under what conditions it is likely to 
happen, we can find ways to facilitate it. 

We therefore address the following research questions: 

(1) What are the kinds of extra work that scientists do to 
make contributions to software generally useful? 

(2) Under what conditions are scientists likely to perform 
(or not perform) extra work? 

(3) What are the design principles that can facilitate extra 
work? 
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To answer these questions, we conducted a multiple case 
study of four scientific software communities. We 
interviewed developers and end users, having them describe 
contributions to and use of the software, and activities 
within their communities. We found that our participants 
conducted a rich set of extra work, and several 
considerations influenced their decisions to do so. We also 
identified several principles that can facilitate extra work. 
In the following sections we review related research, 
describe our study, present the results of our interviews, and 
discuss the implications of our findings. 

BACKGROUND 

The Human Work of Large-Scale Science 
The research challenges of today demand large-scale 
collaborations involving multiple research institutions and 
scientific domains, often as a condition of funding. Creating 
the necessary infrastructure for such projects is an ongoing 
task requiring the establishment and maintenance of people, 
groups, and technologies. For instance, Bietz et al. [3,4] talk 
about “aligning,” which is the work that developers do to 
enact a relationship in a way that enables it to produce 
within a cyberinfrastructure. Developers of middleware, for 
example, must balance building systems that can be used 
across multiple projects, while also ensuring that their 
software meets the needs of funding sources. In order to 
find potential collaborators, developers attend seminars, 
watch funding calls from various agencies, and follow 
trends in multiple scientific domains [4].  

Another kind of work, “leveraging,” emphasizes how an 
existing relationship with a person, artifact, or organization 
can build or strengthen another relationship [3]. To get 
access to a novel technology, a project may create a 
partnership with a research project located at the same 
university that is developing the technology. 

Extra Work of Sharing Scientific Resources 
In the context of large-scale scientific collaboration, recent 
research has examined the work of sharing scientific data, 
not scientific software. A notable exception is work by 
Huang et al. [18] that identified social practices around the 
sharing of and control over commercial and open-source 
software in a bioinformatics research team. For instance, in 
order to use software that another team developed, 
scientists leveraged existing relationships with members of 
the other team and negotiated co-authorship on 
publications. Our work is distinct by looking at the work to 
make features of the software generally useful to a 
community of users, beyond a particular laboratory, and on 
open-source software in particular. 

Much of the research on data has documented work 
required by the recipient. Zimmerman [39], for example, 
documented how ecologists locate data for reuse. She found 
that ecologists devised systematic sampling methods and 
used research journals to bound their data searches by 
timeframe and geography.  

Other research has focused on the work of data 
interpretation [5,29]. For instance, Rolland & Lee [29] 
found that postdoctoral researchers reusing cancer 
epidemiology datasets spent significant amounts of time 
consulting manuscripts to see how the data were written 
about, reading study protocols and documentation to 
understand how key variables were constructed, and even 
tracking down former study members in their new jobs.  

Recipients of scientific data also assess the data’s relevance 
and trustworthiness. Faniel & Jacobsen [10] observed that 
earthquake engineering researchers assess relevance by 
generating criteria related to their research questions and 
comparing those criteria to colleagues’ experimental test 
setups and parameters, which they find in journal articles 
describing the experiments or through direct contact with 
the researchers. To assess trustworthiness, they consult 
experiment documentation first and speak with colleagues 
who produce the data to get basic facts or clarify 
inconsistencies in the data.  

Sharing scientific resources also requires extra effort on the 
part of the sharer. For example, standardizing data for 
sharing can involve creating laboratory protocols, reaching 
agreement on definitions of key terms, translating standards 
to forms, templates, smartphone apps, and web sites, and 
developing material transfer agreements [2]. In a study of a 
standardization process in an ecological research 
community, Millerand et al. [26] documented how 
developers of the standards created training sessions for 
information managers at distant sites to teach them how to 
implement the standard. 

There are likely some kinds of extra work that the sharer is 
in a better position to do, and some kinds of extra work that 
the recipient is in a better position to do. On the one hand, 
when deciding to offer up a piece of software for the 
community, the sharer understands what its functions do, 
and will be able to modify it more easily than the recipient. 
It will therefore be appropriate for that scientist to create 
documentation for the software and fix bugs that surface 
after it goes into operation. On the other hand, the recipient 
may know more about intended use cases for the software, 
or other data and tools with which the software must 
interoperate. The recipient can also provide the sharer with 
valuable feedback. The role of the recipient is an important 
one. In fact, product innovations often come from users, 
who know more about what the product should do, and 
what it means to do it better [13,14]. 

It is clear why recipients do extra work; they are the ones 
who need and will use what sharers provide. The 
motivations of sharers, however, are not as easily 
explained. Undertaking extra work without tangible reward 
is a very real concern, shown in early CSCW research to be 
a reason why groupware systems fail [12,27]. Sharers of 
data may nevertheless get fuller use out of their data, or the 
ability to negotiate co-authorship on publications produced 
using the data. To understand why someone would do extra 
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work on software, we turn to the literature on open-source 
software. 

Open-Source Software: Extra Work for Others (for free)  
There are three primary individual motivations for 
contributing to open-source software [8]. Intrinsic 
motivations include fun and enjoyment [21] and learning 
opportunities [28,31,38]. Internalized extrinsic motivations 
include fulfilling personal needs [20,23]. 

Extrinsic motivations such as reputation and opportunities 
for career development have been the focus of increased 
study in recent years [9,25,28]. Studies of transparent 
software development environments such as GitHub 
(http://github.com/) have found that developers actively 
manage their profiles to gain greater attention and visibility 
for their work [24]. The number of followers a developer 
has, for example, signals their status. The transparency into 
development activities that GitHub provides allows others 
to gauge developers’ expertise [9]. Employers have even 
started using GitHub to find and recruit potential employees 
[25].  

The trouble is that whereas reputation is an effective 
motivator in the world of open-source, it is significantly 
less of a motivator—perhaps even irrelevant—in the world 
of scientific software. The reason is that scientists receive 
reputation for the results they publish, not the software they 
develop. Scientists receive credit for software only 
indirectly. In a study of BLAST [1], a key bioinformatics 
tool, Howison & Herbsleb [16,17] concluded that 
improvements to the software motivated by academic credit 
were less likely to be integrated. They argued that this is 
because integration makes it harder to see who did what, 
undermining the ability of reputation to function as a 
reward. 

METHOD 
To address our research questions, we conducted a multiple 
case study of four scientific software communities 
characterized by the availability of rich data and community 
activity. Three considerations influenced our selection of 
cases. First, we wanted clearly infrastructural projects and 
end user projects, both in the same domain, in order to 
understand how the presence of close ties to users 
influences the kinds of extra work conducted. We found 
very active bioinformatics projects meeting this criterion in 
Biopython and Bioclipse. Biopython is a set of Python 
software libraries designed for use by other scientists who 
develop software [6]. The project began in 1999, and as of 
this writing has 69 contributors to the source-code, and 487 
“stargazers,” people who subscribe to updates made to the 
repository, on GitHub. The source-code has been “forked,” 
cloned by someone to use it as a starting point for their own 
contributions, 283 times. Bioclipse, in contrast, is a 
biological workbench application providing a range of 
functionality for end user biologists [33,34]. The first 
release of Bioclipse was in 2007. In 2009, Bioclipse was re-
written to allow end users to automate functionality using 

the Bioclipse Scripting Language, and to share reproducible 
scripts. The project has 8 contributors, 13 stargazers, and 11 
forks on GitHub.   

Second, we wanted to look at a project that has paid 
developers. The existence of a paid core might influence the 
extra work that volunteers are willing to do, in that 
volunteers may be less willing to do work that they perceive 
to be the responsibility of paid developers. Throughout this 
paper we also use the term “core” to refer to developers 
who are listed as such on their community’s website, who 
self identify as core, or who others identify as core. All paid 
developers are core, but not all core are paid.  

We found a project with paid developers in Bioconductor, 
which comprises components, often R packages, for 
analysis of genomic data generated by biological wet lab 
experiments [11]. First released in 2001 with 15 packages, 
Bioconductor now contains 824 packages. Bioconductor’s 
source-code is hosted in a Subversion repository instead of 
GitHub, so we were unable to collect information about 
contributors, stargazers, and forks. The Bioconductor 
website, however, tracks download statistics for all 
packages. From August 2013 to July 2014, there were 
9,354,646 downloads from 2,35,401 IP addresses 
(http://www.bioconductor.org/packages/stats/). In addition, 
the Bioconductor mailing list has 3,500 subscribers, 
suggesting a large community of users. Each package has 
one or more volunteers who maintain it (although paid 
developers may also maintain packages). The team of paid 
programmers is located at the Fred Hutchinson Cancer 
Research Center in Seattle, Washington, USA. Their job is 
to review user-submitted components, manage official 
releases, provide user support, and develop experimental 
packages. 

Third, we wanted another project to contrast with the others 
on many dimensions, with the intention to see large 
differences and to see if our findings generalized across 
these many dimensions. We therefore selected NetLogo, a 
project used for simulation, instead of analysis [37]. 
Developed in 1999, NetLogo was closed source until it was 
moved to GitHub in 2011, where it has 13 contributors, 165 
stargazers, and 46 forks.  NetLogo is in use by educators as 
well as researchers in the physical and social sciences. 
NetLogo end users are also active contributors, adding 
another dimension to sharing in this particular community. 
Although they do not make direct source-code contributions 
to NetLogo, end users do write models using the NetLogo 
language that simulate various natural and social 
phenomena, and can share these models with others on the 
Modeling Commons (http://modelingcommons.org/), a 
community model sharing site. The Modeling Commons 
currently lists 1,272 models. End users can also write and 
share extensions, which are separate plug-ins that add 
capabilities to the modeling environment. For instance, the 
R extension (http://netlogo-r-ext.berlios.de/) adds the 
capability to send data between NetLogo and R and to call 
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R functions from within NetLogo. The NetLogo extensions 
page lists 37 user submitted extensions. Like Bioconductor, 
NetLogo has paid developers. 

Among the three biology-related projects in our sample, 
Bioconductor and Biopython appear to be more popular and 
actively developed compared with Bioclipse. Using a tool’s 
Google Scholar search results as a rough indicator of its 
usage in scientific work, we found that 24,800 publications 
mention Bioconductor, 1,420 mention Biopython, and 263 
mention Bioclipse. NetLogo appears to be popular across 
multiple domains, and the simulation environment, models, 
and extensions are all actively developed. We found that 
8,970 publications mention NetLogo. 

Data Collection 
We conducted semi-structured interviews with 39 
participants (see Table 1). We identified our participants by 
inspecting a combination of community web pages and 
wikis, mailing lists, and commit access listings from the 
source code repositories.  For Bioconductor and NetLogo, 
we targeted participants who were paid developers and 
participants who contributed in their spare time in order to 
understand differences in motivations and types of extra 
work these two groups conducted. For NetLogo, we 
targeted equally model and extension developers in order to 
understand differences between extra work associated with 
each of these end user-submitted tools and the main 
NetLogo source-code. We solicited participants by e-mail 
and interviewed them using either Skype or Google 
Hangouts. In the interviews we first asked participants to 
talk about their role and activity in the project in general, 
and then we asked about their recent contributions in 
greater detail. Interviews lasted 45 minutes on average. A 
transcription service firm transcribed all interviews. 

Analysis 
We used techniques from grounded theory [7] to analyze 
the interview transcripts. We first imported all transcripts 
into the Dedoose qualitative data analysis software package 
[32]. We then identified and conducted open coding on 
statements about work that participants carried out to make 
the software of general use, and their reasons for doing so. 
When possible, we triangulated participants’ statements 
with work artifacts hosted in project source-code 
repositories as well as descriptions of, and discussions 
about, those artifacts posted in mailing lists and web pages. 

In the next phase of analysis we wrote, shared, and 
discussed descriptive memos about emerging themes in the 
dataset. We met weekly to unify, refine and collapse codes 
where there was commonality, using themes from our 
memos as support. We applied the resulting set of codes to 
the remaining interviews, sometimes revealing additional 
behaviors not captured by our existing set. In such cases we 
extended our codes as appropriate. We continued this 
process until our data no longer revealed new phenomena 
captured by our categories. 

Table 1. Summary of interview participants. 

RESULTS 

RQ 1: What are the kinds of extra work that scientists 
do to make contributions to software generally useful? 
We found that participants conducted a rich set of extra 
work. Our analysis revealed five categories of extra work: 
community management, code maintenance, education and 
training, developer/user interaction, and foreseeing user 
needs. 

Community Management 
Participants described doing work that supported 
community management activities. This work included 
following community norms and guidelines, attending core 
team meetings, evaluating potential contributions, 
promoting the project in the broader community, soliciting 
contributions from community members, announcing work 
in progress, and staying aware of community members’ 
activities. 

Abiding by Community Norms and Guidelines 
Community norms and guidelines provided participants 
guidance about what extra work to conduct. Participants 
from Biopython and Bioconductor  (P37, P31, P40, P7, P2) 
described following guidelines, such as thoroughly testing 
the code, collating examples and documentation, reusing 
common data structures, following naming conventions, 
and breaking the code apart into logical pieces. For 
instance, upon failing the tests required to check his code 
into the Biopython repository, one respondent described 
that a core developer told him to change the syntax of his 
code to make it compatible with all the versions of Python 
that Biopython supports (P40).  

The Bioconductor community has additional expectations 
about the work that follows code contribution. Members of 
the paid core (P23, P27, P41, P42) explained that each 
Bioconductor package has one or more maintainers who 
address support requests and bug reports. 

NetLogo and Bioclipse, in contrast, do not have clear 
guidelines with respect to contribution. Yet NetLogo end 
users who shared their models, for instance, learned how to 

 Volunteer Paid 

Biopython P1, P2, P3, P4, 
P5, P6, P7, P8, 
P21, P24, P30, 
P33, P40 

 

Bioclipse P17, P18, P22, 
P26, P29 

 

Bioconductor P31, P35, P37, 
P38, P44 

P23, P27, 
P41, P42 

NetLogo P11, P12, P13, 
P14, P15, P16, 
P20, P25, P36 

P9, P10, 
P34 
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structure those models based on reviewing existing models 
bundled with the NetLogo software and models shared on 
the Modeling Commons (P11, P13, P16).  From these 
reviews, participants sensed that models should be simple 
and generalizable:  

“What people tend to like are models that are relatively 
simple, and if you want something else, you put them in a 
separate model.  [My model] on the [Modeling 
Commons] isn't exactly like that, but the one that's on my 
hard drive is not at all like that.  It's just a bunch of 
different tools thrown into the same NetLogo model…no 
one wants to look at that unless they're doing stuff with 
it.” (P11, NetLogo) 

P11 described spending a few hours over a week’s time to 
clean out the extraneous functionality in his model before 
sharing it on the Modeling Commons. Another participant 
described that he believed his model was simple enough to 
be generally applicable, but that he still needed to document 
it, as suggested by the NetLogo model template, before he 
felt it was ready to share with others (P13). 

Attending Core Team Meetings 
Attending face-to-face meetings played an important role 
for core developers. Members of the Bioconductor paid 
core team, for example, described meeting every three 
weeks to discuss challenges related to the development of 
experimental packages, policies around package reviews, 
how to make resources on the website more usable, and 
developing courses on the use of particular Bioconductor 
packages (P23, P27). NetLogo core developers met face to 
face every six months to discuss design changes, 
demonstrate prototype functionality to one another, and 
discuss future directions for the project with their grant 
partners (P20, P10).  

Evaluating Submitted Contributions 
Participants also talked about the work of assessing 
potential contributions, often doing their best to help the 
submitter get the contribution into an acceptable state. This 
typically involved back and forth discussions in a GitHub 
“pull request,” a workflow method where a contributor 
submits proposed code changes to a project, which are 
integrated into the main branch only with the repository 
owners’ approval. Pull requests are public; anyone can 
comment on them. Respondents from projects hosted on 
GitHub (i.e., Biopython, Bioclipse, and NetLogo) recalled 
that pull requests generated discussion from repository 
owners and other developers, who pointed out possible 
incompatibilities with the code and other tools within their 
workflows, and suggested possible fixes and improvements 
(P10, P9, P6, P1, P7, P20, P42).  

Paid developers of Bioconductor are responsible for 
reviewing user-submitted packages. As such, we did not 
consider their reviews extra work. However, we found that 
some individuals not paid to work on Bioconductor (e.g., 
P38) volunteered to review packages, which entailed 

reading through people’s code, checking for adequate unit 
tests, checking for reuse of common data structures, and 
looking for thorough documentation. A paid Bioconductor 
developer explained that the review process usually took a 
whole afternoon to complete (P42). 

Advertising Project, Demonstrating Impact 
To promote their software and generate enthusiasm for it 
among the broader community, participants shared updates 
to the software on Twitter and Facebook (P10, P34, P44), 
wrote papers describing the software (P23), and organized 
workshops (P29, P23, P27).  

Often underlying project promotion was motivation to 
increase the software’s perceived scientific impact. 
Participants talked about the importance of demonstrating 
to funding agencies their software’s value to the 
community, employing usage indicators to do so (P27, P22, 
P29, P34). For instance, in annual reports to funders, 
participants included the Bioconductor download statistics 
for their packages and citations to key publications (P22, 
P27). In fact, all projects in our sample provide specific 
citation guidelines for scientists who publish results 
obtained using the software. 

Soliciting Contributions 
Several participants talked about the work of finding project 
contributors (P7, P38, P34, P42). Upon noticing activities in 
end users’ project “forks,” participants e-mailed them 
asking when the code would be ready to integrate (P7, P8, 
P38). Some core developers (e.g., P34) also encouraged end 
users to implement ideas for features discussed on the 
mailing list. 

Several core developers from Biopython and Bioconductor 
described having ideas for functionality, but prioritized 
other responsibilities over implementing those ideas (P7, 
P4, P41, P42).  In response, they applied to the Google 
Summer of Code (GSoC) 
(https://developers.google.com/open-source/soc/) program 
to find a student to produce the code. GSoC is an annual 
program sponsored by Google that pays students to develop 
features for an open-source project during the summer. In 
some cases, students continued to contribute after the 
summer (P4, P5, P8, P44). 

Announcing Work in Progress  
Participants sometimes made announcements on the 
mailing list to notify others what they were working on. 
Participants described that they did this to gather 
suggestions for improvements (P36, P8, P5) as well as 
feedback on the usefulness of the functionality (P5). One 
participant from Biopython described that he preferred to 
announce proposed changes over the mailing list before 
making a pull request because the mailing list can 
potentially reach a broader audience—not just developers 
but end users as well (P5). 
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In the Biopython project in particular, GSoC students 
posted weekly blogs containing descriptions of their 
ongoing work (P8, P7, P30). 

Monitoring other People’s Activities 
Participants also described trying to get a general sense of 
what others in the community were doing. To this end they 
browsed the project mailing lists, GitHub project activity 
visualization and feeds, and question and answer forums. 
For example, participants reported periodically checking 
active forks of their projects to get a general sense of what 
people were doing with their code (P9, P7, P34, P36). As 
the de facto leader of Biopython told us: “I find that useful 
to know what other people have been up to just in case 
there's something I need to be aware of” (P7, Biopython).  

Code Maintenance 
We found that participants made efforts to ensure that their 
software worked correctly before and after making it 
publically available. These efforts included fixing bugs, 
managing dependencies in the code, monitoring code usage, 
and testing.  

Fixing Bugs 
One of the most common types of extra work during 
maintenance was fixing bugs. Respondents described 
receiving bug reports through issue tracking systems and 
through e-mail, over the mailing list, and in pull requests 
themselves (P12, P37, P20, P24, P1, P35). In many cases, 
participants were willing to fix reported bugs. In other 
cases, decisions to fix bugs depended on the importance of 
the bug, the existence of workarounds, and developers’ 
spare time (P10, P12).  

Social capital and reciprocity seemed to play important 
roles in fixing bugs (P20, P29, P5, P14). For example, one 
participant recalled a NetLogo extension that he wrote years 
earlier but no longer used. He described fixing bugs that a 
former professor of his continued to report even though it 
was “kind of a pain to work on it” (P20, NetLogo). 
Members of the Bioclipse project contributed to another 
project on which Bioclipse has a dependency. One 
respondent explained that this “giving and taking” ensured 
that bugs in the other project were fixed quickly (P29, 
Bioclipse). 

Managing Dependencies 
We found that participants spent time resolving 
dependencies in their code. The most common occurrence 
was where a participant noticed that their software was 
failing. The participant would very quickly contact the 
developer of the depended upon code through e-mail or the 
mailing list to resolve the error (P37, P31).  

Work associated with dependency management seemed to 
be linked to the architecture of the project. The 
Bioconductor package system, for example, allows 
contributors to reuse certain data structures and existing 
algorithms, enabling reproducible research and 
interoperability among packages (P27). It is exactly this 

reuse that creates dependencies. The Bioclipse and NetLogo 
architectures allow contributors to write extensions, which 
are like plug-ins, (and models in the case of NetLogo) 
without needing to know how to modify the core 
components. This allows extensions to evolve 
independently (P10), but puts the maintenance burden on 
extension developers (P10, P15). For example, one 
NetLogo extension developer maintained two different 
versions of his extension so that it worked with the older 
and newer versions of NetLogo (P15). Because Biopython 
is a set of libraries, it comprises many wrappers for other 
tools. Participants explained that they were accustomed to 
new changes in file formats and new switches arising from 
new functionality included in new releases of BLAST [1] 
(e.g., P7). Fortunately, very often the fix involved only 
changing a few lines of code.  

Monitoring Code Usage 
We found that participants actively kept track of how others 
used their code. Some participants occasionally checked the 
number of downloads of their software (e.g., P15, P2). 
Others, in addition, instrumented their software to collect 
usage data (P22). Participants described these statistics as 
important to include in grant reports and funding 
applications (P22, P27, P10). 

Usage information also supported developers in addressing 
user problems. The core developers of NetLogo described 
setting up RSS feeds to watch for questions about NetLogo 
on Stack Overflow (http://www.stackoverflow.com/), a 
popular question and answer website for programmers 
(P10, P34). Maintainers of Bioconductor packages watched 
the mailing list for questions about their components (P31, 
P44). Actively monitoring how others were using code was 
relatively rare in Biopython. One respondent mentioned 
setting up a RSS feed to monitor questions about his 
contributions. He also set up a special time several days a 
week to look at questions and answer them. He felt a 
particular satisfaction in helping people and felt that it was 
a good learning opportunity to do so  (P8).  

Testing 
The majority of participants from Biopython, Bioclipse, and 
Bioconductor described regularly testing their software, 
often as a prerequisite for contribution. 

In NetLogo, we noticed more variance. Most end users who 
wrote NetLogo models at least relied on syntax checkers 
available in the NetLogo runtime environment (P14, P13, 
P15, P16, P11). Of that group, some performed additional 
testing using agent based simulation model validation 
techniques (P14, P13), especially when they submitted their 
models for publication. Participants who wrote NetLogo 
extensions described doing minimal testing, such as spot 
checking output by hand and having friends try it out to see 
if it worked on their computer (P11, P12). One participant 
explained that more extensive testing was unnecessary 
because it was not big enough to be worth the effort (P12).  
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Education and Training 
Other extra work supported learning about the software. 
Participants described running tutorials on how to use the 
software to perform common analyses, mentoring other 
community members, and using the mailing list to learn 
about technologies relevant to them. 

Running Tutorials 
We found that participants in all four communities attended 
workshops, often collocated with community conferences, 
aimed to teach people how to use the software. Participants 
described running tutorials, one or two hour long training 
sessions where workshop participants learned how to use 
package APIs to work through a typical analysis on a 
sample dataset (P41, P38, P7, P1, P11, P27).  

Mentoring Others 
Several participants described mentoring new, potential 
members of the community (P1, P42, P7, P4, P41, P40). 
The most common occurrence of mentoring was GSoC, 
where active members of the community volunteered to 
mentor a student while the student proposed and developed 
features for the project. 

The work of mentoring GSoC students typically involved 
corresponding with students weekly via videoconference or 
e-mail, over a period of three months, to discuss progress 
and any difficulties related to proposed goals. Mentors 
taught students about how to contribute to the project, as 
well as software engineering practices more generally. 
Sometimes mentoring was far-ranging, involving career 
choices and sample applications for jobs (P7, P1).  

Studying the Mailing List 
A few participants mentioned that they actively read the 
project mailing list to find new technical knowledge. 
Questions and answers about modules related to their own 
work served as resources that could potentially be relevant 
in the future (P31, P37).  

Developer/User Interaction 
Much extra work evolved from interactions between 
developers and end users. These activities included 
answering end users’ questions, adding requested features, 
and suggesting fixes for others’ code. 

Answering Questions 
Many participants described responding to users’ questions 
related to the software. Their answers clarified how to 
interpret errors encountered when executing the code (P31, 
P37, P7), how to extend the software to provide additional 
functionality (P36, P44, P38, P10), or where to find a 
particular component that addressed the asker’s particular 
need (P12). Participants described that they had discussions 
with a lot of back and forth communication, where 
somebody would ask for more detail, and the conversation 
would “keep going like that for a while” (P36, NetLogo). 

For paid developers of NetLogo and Bioconductor, 
answering user questions consumed a significant portion of 
their free time (P10, P42). They therefore selectively 

answered questions for which they were particularly 
knowledgeable (P27, P42, P15, P9). This strategy seemed 
to be a natural fit for Bioconductor package maintainers, 
who typically only answered questions related to their 
packages (P31, P37, P35) but we observed that participants 
from Biopython (e.g., P8, P5) used it as well. Some 
participants from Bioclipse made themselves available to 
users in real-time on Internet Relay Chat (IRC) (P29, P18). 

Adding Requested Features 
Participants often described receiving feature requests from 
end users through e-mail and over the mailing list (P5, P15, 
P12, P10). Requests deemed to take more time and effort 
needed to pass a certain threshold of priority. A request was 
considered low priority, for example, if there was an 
existing workaround to achieve the desired result (P42, 
P12). For instance, a participant described that he had a user 
request to pass matrices to his NetLogo MATLAB 
extension, but he didn’t implement the feature because the 
same result could be achieved by writing a loop in NetLogo 
to pass multiple arrays to his extension (P12).  

For projects with funding (i.e., Bioclipse, Bioconductor, 
NetLogo), the paid core generally considered feature 
requests as high priority if they aligned with objectives 
outlined in grants (P34, P10), or if there was a clear 
community need for them (P34, P10, P27, P42).  

Suggesting, Making Possible Fixes to Others’ Code 
In some instances, participants not only reported bugs but 
also provided solutions. Often, participants’ needs for the 
corrected functionality motivated their suggestions (P6, 
P20, P40, P3, P35, P37). Sometimes suggestions turned into 
pull requests: 

“When I report issues I usually like to give as much 
information as possible and even point to possible fixes, 
and often as I go through that process I just happen to 
stumble-- I'm like ‘Oh, this is how I would fix that’ or 
something like that, so then a report turns into a pull 
request.” (P20, NetLogo) 

Foreseeing User Needs 
We found that participants often thought about the needs of 
end users. Participants modified their code so that others 
could reuse it, created documentation, and provided 
detailed snippets of source-code illustrating how to use it. 

Creating Flexible Code 
Participants often considered the community who would 
want to use their features, and the range of uses for which 
they might want to use it (P42, P40, P24, P2). One 
respondent, who described himself as “generically selfish,” 
said: 

“…I won’t code up something that I would not use. I 
would not code up something that only I would use and 
only idiosyncrasies…so I coded up things that I would 
use and hopefully a lot of other people would.” (P24, 
Biopython) 
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To create flexible code, participants made code syntax 
compatible with multiple versions of the code interpreter 
(P40), reused common data structures and annotation 
resources from other developers (P23, P4), broke the code 
apart into more logical pieces (P37, P11, P4), and provided 
access to objects via interfaces, which aren’t limited to a 
specific implementation (P31). One participant estimated 
that making “something that’s maintainable and 
accessible” took at least 30% more of his effort (P9, 
NetLogo). 

Participants noted, however, that there were limitations to 
how much they could predict. Sometimes, making code 
more flexible was in response to user requests or feedback 
from source-code submission process (P31, P40). 

Creating Documentation  
Participants often documented their software contributions 
(P23, P15, P12). Participants from the Bioconductor and 
Biopython projects, which uphold certain levels of 
documentation quality, described creating especially 
extensive documentation (P35, P37, P31).  Participants 
from Bioclipse expressed creating documentation as well, 
especially for setting up the Eclipse environment (P18).  

We found more variability in the amount and quality of 
documentation in NetLogo models and extensions. Some of 
our NetLogo participants expressed that they kept more 
documentation for themselves than for others (P15, P13, 
P36), while others provided extensive documentation (P12, 
P11) and kept readme files up to date (P9). One reason for 
this variability may have been confusion about the 
documentation requirements (P16), as the core NetLogo 
team did not review contributions before accepting them, as 
in Biopython and Bioconductor. 

Creating Examples 
We found that in some cases, participants described writing 
additional code that demonstrated how to use their 
software. In Bioconductor, these examples are required for 
package acceptance. Contributors must write “vignettes,” 
documents that provide a task-oriented description of the 
package functionality, and include executable examples.  

Some NetLogo extension and model developers described 
creating examples as well. Extension developers provided 
one-line code snippets how to call functions in their code 
(e.g., P12). NetLogo core team members (e.g., P10) wrote 
whole models to illustrate to end users how to build their 
own. Indeed, NetLogo end users described incrementally 
building on these examples in order to create their own 
(P11, P25, P14, P16).  

RQ 2: Under what conditions are scientists likely to 
perform (or not perform) extra work? 
We found that several considerations influenced whether 
participants were willing to take on extra work. Participants 
thought about their own interests, others’ interests, the 
relevance of the work to their jobs, their obligations, their 
current priorities, and their own expertise. 

Does the work serve my interests? 
Participants often considered whether doing extra work 
would benefit their own interests. They were willing to do 
certain kinds of extra work to publish papers describing 
their software. For example, maintainers of Bioconductor 
packages felt that abiding by community norms during the 
submission process helped produce something that was a 
mark of quality in the bioinformatics community (P38, P31, 
P22), and could be recognized as such through publication. 
Even though participants sensed that these so-called 
“software papers” would not be as well regarded as 
traditional publications, they felt that having a 
Bioconductor package imparted to them “extra credit” 
(P38, Bioconductor). Participants who created NetLogo 
models described that they were willing to provide more 
thorough documentation and conduct extensive testing on 
their models submitted in conjunction with conference and 
journal papers if they knew that the models would also be 
subject to peer review (P13, P14). 

Similarly, in order for current and future funders to assess 
their work positively, participants were willing to advertise 
and promote their projects, and monitor code usage (P22, 
P10, P34). 

Participants tended to do the extra work of suggesting fixes 
when they needed working features for their own research 
(P20, P40, P35, P7, P3, P37). They especially escalated 
their efforts if a feature was high priority for them. As one 
participant put it: 

“The more I need a fix, the more time and energy I’m 
willing to put into it.” (P20, NetLogo) 

Participants seemed less likely to report or suggest fixes for 
issues if they were not relevant to their own research. P16, 
for instance, described not reporting broken models that 
were unrelated to his graduate thesis. 

Does the work serve others’ interests? 
In addition to their own needs, doing extra work for free 
seemed to depend on whether others would benefit from it. 
When, for instance, developers were developing new 
features for themselves they often thought about whether 
others would need similar functionality. For example, one 
participant, a Bioconductor contributor, talked about an 
example where he asked his mentor for advice on adding a 
feature to his GSoC project: 

“I sent [P42], the other author on the package, just sort 
of an update, ‘Here, this is what I added. Do you think 
this is useful to the community? Would people actually 
use this in their workflow?’” (P44, Bioconductor) 

Other participants relied on their intuition  (P41, P42, P27) 
or received information about others’ needs in comments of 
their pull requests (e.g., P20, P40) and in bug reports (e.g., 
P20). Others announced their work in progress over the 
project mailing list in order to get feedback on whether the 
work would be useful to others (P5). After getting a sense 
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how useful their contributions could be, participants 
suggested fixes, created flexible code, examples and 
documentation. 

If participants considered their potential contributions too 
domain specific  (e.g., P40, P15) or if their contribution was 
a personal customization (P20), they would generally not 
try to create a more generic solution for others. 

Does the work align with my job description? 
Participants who were funded to work on projects, or whose 
employers supported their work, tended to engage in certain 
kinds of extra work, such as soliciting contributions, 
attending core team meetings, fixing bugs, mentoring 
others, and advertising and promoting the project. From 
their institutes’ point of view, their work on the projects 
served their immediate professional goals and made them 
look good. As the de facto leader of Biopython explained: 

“So my employers have been quite flexible and they 
recognize that [Biopython] is something that is good for 
my career, it's something the institute is associated with 
in a positive way…So the practical hands-on work that's 
done has been related to things that we needed to do here 
for the research anyway.” (P7, Biopython) 

If extra work instead aligned poorly with participants’ jobs 
or career, they tended to ignore extra work such as adding 
requested features or fixing bugs. For example, a graduate 
student we spoke to mentioned that he didn’t add a feature 
that someone else requested because he “wasn’t being paid 
for it.” (P12, NetLogo)  

Am I under obligation? 
In some cases, even when extra work was not part of 
participants’ job descriptions, they felt an obligation to do it 
anyway. For example, becoming a Bioconductor package 
maintainer created obligations to create examples, conduct 
testing, manage dependencies, create documentation, and 
answer questions. Some participants found that even if they 
did not find extra work personally useful, peer review 
panels required the work as part of their criterion for 
publication (P13, P14). As one NetLogo modeler described: 

“Many of the journals require if you use models in 
your—in the research, then they want you to submit your 
models, and they want them to be documented…I've 
never [been] a big fan of formally specifying all the units 
in my models.  I just think it's an awful lot of work, and I 
hadn't found it to be all that useful, but because I have to, 
I do it.” (P13, NetLogo) 

As we mentioned previously, social capital and reciprocity 
seemed to play a role in the extra work of fixing bugs (P29, 
P20). Participants seemed to feel socially obligated to 
conduct this extra work. 

Is this extra work high enough priority? 
Participants prioritized certain kinds of extra work, such as 
fixing bugs, answering questions, mentoring others, 
suggesting possible fixes, monitoring code usage, and 

adding requested features. Even if the work aligned well 
with participants’ job descriptions, they had to prioritize it 
with respect to other tasks. P10, a core developer of 
NetLogo, described that critical bugs took priority over 
bugs with existing workarounds. NetLogo developers also 
described balancing user submitted bugs against 
requirements directly from the PI of the grant that supports 
NetLogo (P10, P34). Requirements originating from the PI 
often took priority. 

Educators teaching NetLogo in the classroom (e.g., P13, 
P16) prioritized teaching responsibilities over extra work 
like monitoring code usage and monitoring other people’s 
activities. Biopython GSoC mentors described that, in 
recent years, mentor time had become a limiting factor for 
the number of students they could accept (P7, P1). One 
former mentor explained that changes in his career, along 
with having to support his family, made mentoring GSoC 
students a lower priority than programming: 

“It’s a lot of time to devote; and I think people have a 
hard time allocating their time sometimes. You know? 
That’s one of the reasons why I can’t do as much with 
[mentoring] now. I have a family and I don’t have the 
time to do that. And it’s like you have a certain amount of 
hours for open-source stuff; and you’re like ‘why?’ And I 
prefer to code I guess.” (P1, Biopython) 

Do I have the expertise? 
Participants explained that suggesting possible fixes and 
answering questions depended on whether they had the 
necessary expertise to do so. When participants had the 
expertise to contribute a fix to a project, for example, they 
would typically do it (P20, P40, P3). However, if 
participants did not have the required knowledge, they 
would not. A member of the NetLogo core team explained 
how he decided not to contribute a fix to the git project:  

“For example, I found a bug in git once. I narrowed the 
bug down to a single line, fixed it for myself, and 
reported it, but did not contribute my fix. I'm glad I didn't 
too; when the bug was fixed, it required more extensive 
knowledge of the coding standards of git, and more 
extensive knowledge of the programming language (bash 
in this case), than I had.” (P20, NetLogo) 

RQ 3: What are the design principles that can facilitate 
extra work? 
We observed a number of common obstacles and 
difficulties in performing extra work.  For many of them, a 
subset of participants had worked out effective solutions 
that we think can be applied more broadly.  For others, 
existing solutions in other domains (e.g., mobile 
applications) seem to be a good fit to the problem.  In this 
section, we describe a number of these problems and 
obstacles, design principles we think could be helpful, and 
the basis for this recommendation. 
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Use Checklists to Facilitate Learning About Community 
Norms and Guidelines  
Common problem. In addition to learning the technical 
details of the scientific software under development, 
scientists also have to learn about the guidelines and norms 
of the communities. In the first section of the results we 
discussed that abiding by these norms and guidelines 
requires extra work from contributors. These guidelines 
varied significantly across different communities and 
participants often learned about these through interacting 
with other members or reading them on the community’s 
websites.  

We also found that there is ambiguity in interpreting these 
guidelines, as one NetLogo participant described:  

“I'm not exactly sure what the standards are for [the 
Modeling Commons] I noticed a pretty big range of 
quality in the models. I definitely have downloaded a few 
that were literally broken and just didn't run.  So I'm not 
sure what to make of the criteria for what makes an 
appropriate model to submit there.” (P16, NetLogo) 

Sometimes contributors only learn about these guidelines 
after making a contribution. For example, in Biopython, 
contributors often learn about expected coding standards 
after they submit a pull request on Biopython’s GitHub 
repository (e.g., P40). This is time consuming and only 
compounds the extra work that already comes with 
following guidelines.  

Design principle. We believe many communities could 
benefit by borrowing an idea from Bioconductor, which 
maintains a short checklist of things to do before submitting 
a contribution. This checklist helped contributors learn and 
gauge the extra work required; all of our Bioconductor 
participants understood the expectations associated with 
package submission.  Therefore, the extra work involved in 
abiding by community norms and guidelines may be 
considerably reduced by investing in checklists that help to 
ensure consistency and completeness in submitting 
contributions.  

Provide Automated Support for Asking Questions 
Common problem. We observed that a majority of scientists 
were involved in answering questions on mailing lists, 
which we found was another form of extra work. However, 
mailing lists are known to have obvious drawbacks. For 
instance, due to the large volume of emails, users may 
sometimes fail to notice certain queries of relevance to 
them. We found that scientists overcome some of these 
limitations by adopting strategies such as checking emails 
frequently (P42), using email filters (P31), and prioritizing 
questions (P34).  

Design principle. Other communities may benefit from the 
NetLogo core team’s (e.g., P34, P10) practice of using 
Stack Overflow, instead of mailing lists, for asking 
questions: 

 “People that go and ask a question on a mailing list 
don’t usually search for the archives of the list before 
asking their question.  Stack Overflow kind of gives you 
that for free because it analyzes the text of the question, 
automatically suggests similar questions that could have 
an answer that’s relevant for you.” (P10, NetLogo) 

Social Q&A sites such as Stack Overflow allow users to 
efficiently manage and answer questions. One of the 
biggest advantages that such Q&A sites offer is the ability 
to view questions that are similar and relevant to the one 
that is being raised. In addition, users can mention similar 
questions by simply specifying their URLs. Although 
migrating from traditional mailing lists to sites such as 
Stack Overflow might be one possible solution [35], it may 
not be entirely feasible, since scientists may not readily 
adopt new tools that do not directly benefit their domain 
task [30]. Therefore, providing this extended functionality 
in a way that allows users to continue using mailing lists 
can significantly reduce the extra work associated with 
answering questions. 

Allow Contributors to Choose Between Private and Public 
Modes of Evaluating Submitted Contributions 
Common problem. Code contributions in open-source 
software are often reviewed and discussed by other 
members before the code is accepted. The use of pull 
requests on GitHub to submit code contributions makes this 
process transparent and easier for community members to 
review and improve the code. However, we found that 
scientists are not always comfortable with making the 
review process public. For example, in Bioconductor, the 
discussions between the reviewer and the contributor 
happen through private emails and only the revised code is 
uploaded to the public repository. While this form of review 
takes more time than using pull requests, it allows new 
contributors to learn in a friendlier environment and 
prevents any embarrassment that they might often face 
(P42). However, a few Bioconductor contributors we 
interviewed did not mind if their code reviews were 
accessible to all (P31). On the other hand, a transparent 
review process in a community like Biopython might deter 
potential contributors.  

Design principle. Drawing from projects with very different 
levels of transparency in the evaluation process, we believe 
that other communities may find it helpful to allow 
contributors to choose between these forms of evaluating 
code contributions rather than enforcing a protocol. In some 
cases, this may help facilitate evaluating submitted 
contributions. 

Allow Users to Provide Feedback Within the Software, in as 
Few Steps Possible 
Common problem. After contributions have been made, we 
found that feedback allows developers to evaluate how well 
they serve the needs of others and inform about what they 
should do to serve those needs. For example, P12, who 
developed an extension for NetLogo, mentioned that he had 
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updated the documentation a few times after he received 
emails from the users. However, some participants (e.g. P9, 
P36) said that they rarely received feedback from users, 
although they were aware that their software was being 
used due to the number of downloads.  

Design principle. We think that communities could benefit 
from techniques applied in the mobile applications domain, 
which allow users to rate and provide comments directly 
within the software. Examples include one-time rating 
popups and easy to remove banners at the top of the screen. 
By allowing users to effortlessly provide feedback on how 
they are using the software and, if possible, who they are, 
these designs would not only facilitate extra work around 
monitoring code usage, but also give developers more 
information that could help foreseeing user needs for other 
contributions. These techniques could therefore reduce the 
effort of users to find a channel for giving feedback to 
developers.         

Separate Requested Features from Reported Issues 
Common problem. There was a sense among our 
participants (e.g., P34, P35) that GitHub is a place for 
developers whereas the mailing list is a place for end users. 
In typical software development practices, bugs and 
requested features are reported to a central issue tracking 
database. In many cases, the interfaces to these databases 
reside on GitHub. Whereas developers may expect to find 
user needs in these systems, we found a portion of 
developers’ extra work involved finding user requests on 
the mailing list. An additional complication with the 
mailing list is that developers were already conducting extra 
work to filter and prioritize postings of interest. If the right 
person does not see the message at the right time, it may 
never be addressed.   

Design principle. It seems useful to separate requested 
features from reported issues in order to direct developers 
to requests with high user demand. As our participants 
pointed out, foreseeing user needs was an important aspect 
of their work, but there was a limit to what they could 
predict. A central dashboard dedicated to requested features 
may decrease the likelihood that important needs become 
buried under reported bugs, giving developers insight into 
what is needed and how many people need it.  An interface, 
possibly a variation of the reddit (http://www.reddit.com/) 
format, where developers and end users can view and sort 
requested features by popularity, and vote on them with a 
simple “thumbs up” and “thumbs down” button, might 
prove helpful.   

DISCUSSION 
Based on our findings, we discuss three themes in the extra 
work that scientists do. The first theme is that of sharing as 
a continuing commitment. The second theme is that of 
grasping the needs of scientists and conveying developer 
intent. The third theme is that of efficiently distributing 
extra work among sharers and recipients. 

Sharing as a Continuing Commitment 
Some modes of sharing are an event, e.g., I give my data to 
a data manager, thus I have shared it and my effort is 
complete. Our findings illustrate that much extra work for 
scientific software occurs throughout the lifecycle, not only 
as a specific sharing event. We found that, as part of their 
regular work practices, when developing a new feature, 
participants often first considered the possible range of uses 
for their contributions. Consider P40, the developer who 
determined his code would be too domain specific to share 
with Biopython, P22 who wrote documentation and 
provided examples of his NetLogo extension in action, and 
P44 who sent an e-mail to the maintainer of a Bioconductor 
package asking if certain functionality would be useful. In 
many cases, the work did not stop there, particularly for 
Bioconductor package maintainers. Extra work actually 
reflected an ongoing commitment, in which participants 
continued to fix bugs, manage dependencies, answer 
questions on the mailing list, implement new features, and 
monitor the code usage after the software was in operation.  

Some kinds of extra work seem to come at predictable 
intervals, whereas others do not. In Bioconductor, for 
instance, when preparing initial contributions, would-be 
contributors follow specific guidelines outlining submission 
requirements. Promoting the software, and demonstrating 
its impact are especially important when calls for funding 
appear. Other kinds of extra work are more dynamic, 
occurring in response to new uses of the software (e.g., 
evaluating new submissions, monitoring code usage) and 
changes to other tools on which the software interoperates 
(e.g., managing dependencies). We note, however, that the 
choices scientists make about the extra work they perform 
early on can affect what happens later. For example, once a 
scientist writing software understands a need well enough 
(e.g., by announcing work in progress), it is likely efficient 
at that time to create examples, write documentation, and 
make the code flexible. Otherwise, the scientist will have to 
spend more time later on fixing bugs, adding badly needed 
features, and answering questions that could have likely 
been foreseen earlier.  

Grasping User Needs, Conveying Developer Intent 
Knowledge about broader uses of scientific software must 
somehow make its way into the development process if 
community needs are to be well served. The participants 
that we interviewed considered possible future uses of their 
software, often relying on their own intuitions and 
experience (e.g., P40, P42). End users often users nudged 
developers by suggesting ways to make software 
contributions more general, reporting bugs, requesting more 
complete documentation, and asking for new features. 

We found, however, relatively fewer instances of 
developers conveying the intent of their development 
trajectories. In many cases, developers announced new 
features and major releases of the software, or held 
workshops on analyses possible with new analysis 
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packages—but after the software went into operation. 
Although developers could track activities of other 
developers using activity cues available in GitHub, we 
found that, in general, end users did not use these features. 
Without ways for developers to convey the intent of their 
development activities, potential users may simply be 
unaware or, or even have any way to discover, that the 
functionality they need exists. Broad exposure would also 
help increase the probability that errors are corrected before 
they have the opportunity to break commonly used 
workflows or creep into publications. 

Efficiently Distributing Extra Work  
It seems useful to think about efficient divisions of labor for 
extra work. As we mentioned in the background section, 
sharers are in a better position to do some extra work 
whereas recipients are better suited to do other extra work. 
Interestingly, the incentives to do the work do not 
necessarily line up to create an efficient division of labor, 
because the recipient, who, as a potential user, has a 
pressing current need, generally has a more obvious 
incentive. 

Future Work 
Future studies might investigate variables that influence 
who should do extra work. The predictability of the need 
for the extra work, for instance, may be of interest. If the 
sharer understands what is actually needed, the sharer will 
be in a better position to implement it, since the sharer 
understands the code. Another variable of interest might be 
how many people actually need what the extra work 
accomplishes. If many people will benefit, the sharer may 
be more inclined to do the extra work, especially if the use 
of the software matters to them for funding purposes (e.g., 
P27, P22, P29, P34). In sum, we hypothesize that if a need 
is predictable, and many users need it, it is more efficient 
for the sharer to do the work. Otherwise, the recipient 
should do the work because the sharer does not sufficiently 
understand what is actually needed, and only the recipient 
will benefit. 

In addition, future studies might explore architectural 
principles for scientific software that lower the barriers to 
contribution and allow end user customization, thereby 
relaxing dependencies on the original developers. Usable 
APIs for instance, may make it easier for end users to 
contribute functionality. NetLogo end users, for example, 
can contribute small Java extensions without understanding 
the core functionality of NetLogo, which is written in Scala, 
another programming language. These extensions serve the 
contributor’s needs, and potentially many others’, without 
imposing extra work on the core developers.  Toolkits [13] 
that allow end users to make customizations to the software 
but maintain the same look and feel of the core software 
(e.g., same user interface elements), may be valuable in 
instances, for example, where few users need the features.  

Finally, future work might include broadening studies of 
extra work on software to other scientific disciplines where 

software sharing behaviors may be less prevalent. For 
instance, Velden [36] found that the field of synthetic 
chemistry emphasizes individual skill and personal 
reputation over team efforts and collective achievements. 
Chemical databases that specify molecular structures play a 
particularly crucial role in the routine work of synthesis, 
and discussions of important synthesis details are often kept 
private in order to hold competition at bay. Field specific 
characteristics may therefore influence questions around the 
conditions in which scientists are likely to perform extra 
work. In particular, serving others’ interests may in fact be 
a disincentive, rather than an incentive, to share. 

Implications for Funding Agencies 
As others have argued, studies of scientific collaborative 
work can have important implications for funding policy 
[19]. This paper provides a comprehensive list of the extra 
work associated with developing open-source scientific 
software, as opposed to developing such software for 
oneself. The results suggest important considerations for 
funding scientific work of which software development is a 
component. The potential payoffs of extra work are 
substantial, provided that there exists a sizable community 
to use the software, because other scientists can use the 
software to discover new knowledge. Understanding the 
rich variety of extra work that scientists conduct can better 
inform funding policy makers of how to design practices 
and formulate objectives that align with these efforts. Such 
an understanding may also support proposal reviewers in 
evaluating software maintenance strategies, which are 
currently part of data management plans. Recognizing the 
value of this extra work, funders may be more willing to 
provide more substantial financial support to address 
scientific software maintenance efforts. There may also be a 
role for industrial funders in motivating scientists to 
perform extra work. Scientists interested in 
commercializing their software, for example, may align 
with industry partners who recognize its commercial 
potential and are willing to fund its development or pay a 
portion of their own developers directly to work on it. With 
adequate support, the software can continue effectively, 
building new functionality, and supporting users over time.  

CONCLUSION 
Our work is part of a growing body of research on the 
sharing and circulation of scientific resources. It is one of 
the few studies to examine extra effort associated with 
sharing software, even though software is of vital 
importance to nearly every scientific result. We found that 
both paid and unpaid contributors conducted a rich set of 
extra work, and that several considerations led them to do 
it. We also identified design principles that can facilitate 
extra work among sharers and recipients. In contrast to 
previous work showing that reputation for contributions to 
software does not matter to scientists [16,17], we found that 
software use matters to them for funding purposes. 
Moreover, developers might do more to convey their intent 
to end users if extra work is to be efficiently distributed. 
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Our results open up opportunities for tool design, policy, 
and future empirical studies of scientific software 
development in CSCW. 
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